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We present a comprehensive theoretical study of the second harmonic generation �SHG� in metamaterials
consisting of arbitrary distributions of cylindrical nanowires made of centrosymmetric materials. The electro-
magnetic field at both the fundamental frequency �FF� and second harmonic �SH�, as well as the total cross
section, the absorption cross section, and the scattering cross section, are calculated by means of a numerical
algorithm based on the multiple scattering method. Our algorithm fully describes the nonlinear optical response
of the metamaterial by incorporating the contributions of both the surface and bulk nonlinear polarizations and
can be applied to both s- and p-polarized incident waves. We use this numerical method to investigate the SHG
in a series of particular cases of practical interest, namely, a single metallic cylinder, chains of metallic
cylinders, and periodic and random distributions of such cylinders. In particular, we study the relation between
the local field enhancement, via the excitation of surface plasmon-polariton modes, and the amount of energy
absorbed or scattered in the far-field, at the FF and the SH.
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I. INTRODUCTION

With the emergence in the recent years of the research
area of metamaterials,1–19 we have witnessed a dramatic
change of our approach to research in the physical properties
of electromagnetic materials. Thus, during the last few years,
it has become increasingly apparent that the effective, mac-
roscopic optical properties of two-dimensional �2D� and
three-dimensional �3D� �meta�materials can be dramatically
altered by structuring them at a scale comparable or smaller
than the operating wavelength. To be more specific, unlike
the case of naturally occurring materials, the primary build-
ing blocks of metamaterials are characterized by a broad set
of material and geometrical parameters, and therefore present
a significant potential for designing materials with new or
improved functionalities. For example, by a proper design of
the primary unit cell of metamaterials it has been possible to
demonstrate theoretically and then fabricate new materials
with remarkable properties, such as materials that are mag-
netically active at terahertz and optical frequencies,1–4 3D,5–9

and 2D10,11 materials with negative index of refraction,
frequency-selective surfaces,12 transformation-optics electro-
magnetic media,13–15 or low-index of refraction
materials.16–19

It has been demonstrated that the “photonic atoms,”
which are the primary building blocks of photonic metama-
terials, can be designed so as not only to emulate linear
physical properties of regular atoms, such as magnetic
moment1 or electric polarizability,20 but also to possess non-
linear optical properties, such as second-order21–23 and
third-order24,25 nonlinear optical response. Following this
analogy between optical materials made of atoms and
metamaterials consisting of macroscopic photonic atoms, it
becomes apparent that gaining a comprehensive understand-
ing of the linear and nonlinear optical properties of these
macroscopic building blocks is a prerequisite to a successful
development of a general theory of optical metamaterials. To

this end, of a particular importance is the case of metamate-
rials based on metallic nanoparticles, since in this case the
primary constituents of the metamaterial support localized
electromagnetic excitations, the so-called surface plasmon-
polariton �SPP� modes,26,27 whose resonant excitation can
strongly affect the optical response of the metamaterial. In
particular, at the corresponding resonance frequencies the
electromagnetic field is strongly enhanced, an effect that dra-
matically influences the linear and nonlinear optical response
of the metamaterial.

One of the main consequences of the plasmon-induced
resonant enhancement of the electromagnetic field is that
strong nonlinear optical effects can be achieved at relatively
small optical power. This effect of SPP-induced resonant en-
hancement of nonlinear optical interactions has been em-
ployed in a series of important applications, such as single-
molecule detection via surface-enhanced Raman scattering
�SERS�,28 nanoscale antennae,29 optically active guiding
nanostructures,30–32 or metallic nanotips for near-field optical
microscopy.33,34 In particular, the strength of second-order
nonlinear optical effects, one relevant such optical process
being the second-harmonic generation �SHG�, is proportional
to �E�4, and therefore an enhancement of �10–100 of the
local field at the fundamental frequency �FF�, easily achiev-
able by using metallic nanoparticles, leads to an increase of
up to 108 of the intensity of the light generated at the second
harmonic �SH�.35–37 It should therefore be clear that in order
to achieve a comprehensive characterization of the SHG in
metallodielectric structures one has to employ theoretical
methods and/or numerical simulations that enable one to ac-
curately determine the spatial distribution of the electromag-
netic field at the FF.

Since most metals are centrosymmetric media, i.e., they
are invariant to the inversion symmetry transformation, it is
of particular interest to develop robust theoretical models
that describe the generation of the SH upon the scattering of
light from ensembles of nanoparticles made of centrosym-
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metric materials. Recently, significant progress toward this
goal has been made, with some notable examples being the
theory of SHG from spherical38 and cylindrical39 particles of
low-index contrast centrosymmetric materials or, more gen-
erally, SHG from a metallic cylinder.40 It should be noted
that in the former case the theoretical approach is valid only
within the Rayleigh-Gans-Debye approximation, i.e., it is as-
sumed that the field at the FF is not perturbed during the
scattering process, whereas the latter approach only applies
to a single scatterer.

In this paper we present a numerical method based on the
multiple scattering matrix �MSM� algorithm, which can rig-
orously describe the general case, namely, the SHG from a
collection of cylinders with arbitrary electric permittivity,
which are made of centrosymmetric materials. In addition,
we use this numerical method to study the SHG in several
cases of theoretical and practical interest, namely, an isolated
cylinder, chains of coupled cylinders, and ordered and ran-
domly distributed arrays of cylinders. Importantly, our theo-
retical approach enables one to account for the contribution
to the SH field of both the surface and the bulk nonlinear
polarizations. The paper is organized as follows. In the next
section we present the physical model and the mathematical
formalism employed to determine the electromagnetic field
at the FF and SH. Then, in Sec. III, we introduce several
physical quantities, namely, the total cross section, the ab-
sorption cross section, and the scattering cross section, which
are instrumental in characterizing the linear and nonlinear
wave scattering. Subsequently, in Sec. IV, we apply our nu-
merical method to study the linear and nonlinear wave scat-
tering from a set of centrosymmetric cylinders. In particular,
we consider the wave scattering by one cylinder, scattering
by one-dimensional �1D� chains of cylinders, and the general
case of wave scattering by 2D ordered and random distribu-
tions of cylinders. In the last section of the paper, we sum-
marize and discuss our main conclusions.

II. MATHEMATICAL FORMALISM AND NUMERICAL
ALGORITHM

The numerical algorithm used in our analysis is based on
a recently introduced numerical method that describes the
SHG in photonic crystals made of noncentrosymmetric qua-
dratically nonlinear optical materials.41 In this case, the
dominant nonlinear optical interaction is described by the
second-order nonlinear bulk polarization. However, this di-
pole contribution to the nonlinear polarization vanishes in
the case of centrosymmetric materials and therefore the nu-
merical method introduced in Ref. 41 cannot be used in its
original form to study the SHG in this important class of
materials.

In the approach introduced in this paper the calculation of
the scattered field at the SH is performed in two stages. First,
by using a standard MSM algorithm the electromagnetic
field at the FF is calculated, and this field is subsequently
used to determine the nonlinear polarization at the SH. In a
second stage, this nonlinear polarization, which plays the
role of the source of the field at the SH, is used to calculate
the spatial distribution of the scattered field at the SH. Note

that this two-stage approach implies that no energy is trans-
ferred back from the SH to the FF and therefore the numeri-
cal method presented here is valid only within the so-called
undepleted pump approximation, i.e., when the energy at the
FF dissipates only through linear optical losses. Due to the
reduced conversion efficiency of the SHG interaction and the
small size of the nanostructures involved in the nonlinear
scattering process, the undepleted pump approximation is
valid in all cases considered in this work.

A. Description of the system geometry

The nonlinear scattering problem is schematically illus-
trated in Fig. 1. Thus, we consider an ensemble of N parallel,
infinitely long cylinders, Cj, j=1,2 , . . . ,N, embedded in a
background medium with electric permittivity �b and mag-
netic permeability �b. The cylinders are assumed to be ori-
ented along the z axis. The j-th cylinder has radius Rj and is
characterized by the permittivity � j���, which, for the sake of
generality, is assumed to be dependent on the frequency �,
and the magnetic permeability � j; here and in what follows
we consider that � j =�b��0, j=1,2 , . . . ,N, where �0 is the
magnetic permeability of the vacuum. In addition, each cyl-
inder is characterized by a surface second-order susceptibil-
ity, �̂s,j

�2�. The position of the center Oj of the j-th cylinder is
specified by the polar coordinates �rj ,� j�, which are defined
with respect to a coordinate system with the origin in O.
Moreover, as per Fig. 1, the position of the center of the k-th
cylinder, specified in a coordinate system with the origin in
Oj, is defined by the polar coordinates �rk

j ,�k
j�, whereas the

position of an arbitrary point P, defined with respect to the
coordinate systems with the origin in O and Oj, is specified
by the polar coordinates �rP ,�P� and �rP

j ,�P
j �, respectively.

An incident monochromatic electromagnetic plane wave
impinging onto the system of cylinders is fully described by
its conicity angles �0, �0, and 	0, where �0 is the angle
between the projection onto the xy plane of the wave vector

FIG. 1. Schematics of the system geometry. The scattering sys-
tem consists of N cylinders embedded in a background medium
with electric permittivity �b and magnetic permeability �b. The j-th
cylinder has radius Rj, permittivity � j, permeability � j, and surface
second-order susceptibility �̂s,j

�2�.
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of the incident wave and the x axis, �0 is the angle between
the wave vector of the incident wave and the z axis, and 	0 is
the angle between the electric field of the incident wave and
the plane defined by the z axis and the wave vector. More-
over, while our analysis can be applied to the general case of
oblique incidence, for the sake of simplicity we consider
here only the case of normal incidence, i.e., �0=
 /2. Then,
under these circumstances, two independent cases can be
considered: in the first case, which corresponds to the trans-
verse electric �TE� polarization, the electric field of the inci-
dent wave is perpendicular to the axis of the cylinders �	0
=
 /2�, whereas in the case of the transverse magnetic �TM�
polarization �	0=0�, the magnetic field of the incident wave
is perpendicular to the axis of the cylinders.

B. Calculation of the fields at the fundamental frequency

In order to calculate the fields at both the FF and SH we
have employed a method based on the MSM algorithm. This
formalism has been successfully used, e.g., to solve the lin-
ear scattering problem in the case of oblique incidence of
light onto a 2D photonic crystal42 �for a detailed description
of the MSM method see Ref. 43 and the references therein�.

Due to the 2D nature of the linear scattering problem
considered here, the electromagnetic field at the FF is fully
determined once one knows the longitudinal �z� component
of either the electric or the magnetic field. To be more spe-
cific, for the TM �TE� polarization this longitudinal compo-
nent is Ez �Hz�. Then, using the Maxwell equations, it can be
easily shown that for harmonic fields that depend on time as
ei�t, the transverse components are given by

H� = −
i

�2��
�Ez

�r
, �1a�

Hr =
i

�2��
1

r

�Ez

��
, �1b�

for the TM polarization, and

E� =
i

�2�0�
�Hz

�r
, �2a�

Er = −
i

�2�0�
1

r

�Hz

��
, �2b�

for the TE polarization. In these relations, the transverse
component of the wave vector, �, is defined as

�2�r� = k2�r� − k2 cos2 �0, �3�

where k=��0��r�� is the wave vector. Depending on the
position r in the transverse plane, ��r� is equal to either the
permittivity of one of the cylinders or to �b. Also, note that
for normal incidence �=k, as in this case �0=
 /2.

In order to simplify the presentation of our numerical
method, we assume that all cylinders are made of the same
material. In particular, we consider the case of metallic cyl-
inders, their permittivity being described by the Drude
model,

���� = �0�1 −
�p

2

��� + i��� . �4�

Here, �p and � are the plasma and damping frequency, re-
spectively. As specific values for these parameters we choose
�p=1.351016 rad /s and �=2.731013 s−1, values that
correspond to Ag.44

Although the technical details can be somewhat compli-
cated, the MSM formalism consists of two simple steps.
First, the incident and the scattered electromagnetic fields are
expanded in Fourier-Bessel series. Then, the boundary con-
ditions at the surface of the scatterers are used to construct a
system of linear equations whose solution determines the
Fourier coefficients of the Fourier-Bessel series expansion of
the scattered field. Once these coefficients are determined, by
solving the corresponding system of linear equations, the
electromagnetic field can be found at any point in space.
Thus, given an incident plane wave, the longitudinal compo-
nent of the incoming field, Uz

inc, which depending on the
polarization of the incoming wave is Uz

inc=Ez
inc �Uz

inc=Hz
inc�

for TM �TE� polarized waves, can be written as

Uz
inc�r,�� = 	

m=−�

�

amJm��br�eim�, �5�

where Jm denotes the Bessel functions of the first kind. The
Fourier coefficients am depend solely on the type of the in-
coming wave, for a plane wave being given by the following
formulas:

am = 
E0 sin 	0 sin �0e−im�
/2+�0�, Uz = Ez

E0

Zb
cos 	0 sin �0e−im�
/2+�0�, Uz = Hz� , �6�

where Zb=��b /�b is the impedance of the background me-
dium.

The field scattered by the cylinder Cj can be expanded,
too, in a Fourier-Bessel series, but since at r→� the scat-
tered field must contain only outgoing waves, the basis of
expansion functions consists of Hankel functions of the sec-
ond kind, Hm

�2�. Hence, at a point P�r ,��, the field scattered
by the cylinder Cj is written as

Uz,j
sc �r,�� = 	

m=−�

�

bmjHm
�2���brP

j �eim�P
j
, �7�

where bmj are the expansion coefficients and represent the
main quantities that are to be determined numerically. It is
easy to see now that once the coefficients bmj are computed,
the total field at a point P can be readily found. Thus, the
field Uz

tot�P� is given by the sum between the incoming field
and the fields scattered by all the cylinders,

Uz
tot�P� = 	

m=−�

�

amJm��brP�eim�P + 	
j=1

N

	
m=−�

�

bmjHm
�2���brP

j �eim�P
j
.

�8�

To find the scattered field we first investigate the source of
the field around a cylinder Cj. Thus, this field can be viewed
as being generated via scattering off this cylinder of an in-
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coming local field, Uz,j
loc, which consists of the incoming

plane wave and the sum of the fields scattered by all cylin-
ders, except the cylinder Cj. This local field can be written as

Uz,j
loc�P� = Qj 	

m=−�

�

amJm��brP
j �eim�P

j

+ 	
k=1

k�j

N

	
m,q=−�

�

T jk,mqbqkJm��brP
j �eim�P

j
, �9�

where Qj are phase factors that transform the incoming field
from the system with the origin in O to the system with the
origin in Oj and T jk is the electromagnetic coupling matrix
between the cylinders j and k. These parameters are defined
as42

Qj = e−i�brj cos��j−�0�, �10a�

T jk,mq = ei�q−m��k
j
Hm−q

�2� ��brk
j� . �10b�

The Eq. �9� can be easily derived by inserting in Eq. �8� the
Graf formula45

Hm
�2���brP

k �eim�P
k

= 	
q=−�

�

ei�m−q��k
j
Hq−m

�2� ��brk
j�  Jq��brP

j �eiq�P
j
.

�11�

Now, the local field Uz,j
loc�P� can itself be expanded in a

Fourier-Bessel series,

Uz,j
loc�P� = 	

m=−�

�

dmjJm��brP
j �eim�P

j
. �12�

The total field around a cylinder Cj can therefore be written
as the sum between this local field and the field scattered by
the cylinder �the index j here signifies that Uz

tot�P� is calcu-
lated in the system with the origin in Oj:

Uz,j
tot�P� = 	

m=−�

�

�dmjJm��brP
j � + bmjHm

�2���brP
j �eim�P

j
.

�13�

We introduce now the column vectors a j = �Qjam�, b j = �bmj�,
and d j = �dmj�, which contain the Fourier coefficients of the
incoming plane wave, the scattered field, and the local field
associated to the cylinder Cj, respectively. Furthermore, the
scattered field and the local field associated to the cylinder Cj
are related by the scattering matrix S j of the cylinder Cj, and
thus the relation between the vectors b j and d j is given by

b j = S jd j . �14�

Combining Eqs. �9�, �13�, and �14� yields the following lin-
ear system of matrix equations:

	
k=1

N

�	kjI − �1 − 	kj�S jT jkbk = S ja j, j = 1,2, . . . ,N ,

�15�

where 	ij is the Kronecker symbol and I is the identity ma-
trix. This system of equations can be reduced to a single
matrix equation. For this, we stack the column vectors b j and
S ja j into the single column vectors B= �b j� and G= �S ja j�,
respectively, and define the scattering matrix, S�, of the en-
tire system of cylinders as,

S� =�
I − S1T12 − S1T13 . . .

− S2T21 I − S2T23 . . .

− S3T31 − S3T32 I . . .

] ] ] �

� . �16�

With these definitions, Eq. �15� becomes

S�B = G . �17�

Since the vector G is known, the linear scattering problem
has been reduced to finding the scattering matrix of the sys-
tem, S�, and then solving the system �17�. More exactly,
once S� is determined, the Fourier coefficients B of the scat-
tered field are calculated by simply solving the linear system
�17�, the total field at a point P being subsequently deter-
mined from Eq. �8�. To this end, computing S� amounts to
finding the matrices S j of the cylinders Cj, which can be
easily determined by using the continuity of the tangent com-
ponent of the fields across the boundary of the cylinder Cj.

In the case of the TE polarization, the boundary condi-
tions can be expressed as

Hz,j
ext�Rj,�� = Hz,j

int�Rj,�� , �18a�

E�,j
ext�Rj,�� = E�,j

int �Rj,�� . �18b�

The magnetic field inside the cylinder Cj, Hz,j
int, can be written

as

Hz,j
int�P� = 	

m=−�

�

cmjJm�� jrP
j �eim�P

j
, �19�

whereas the tangent component of the electric field, E�,j
int , is

determined from the Eq. �2a�. Using the Eq. �13�, imposing
the continuity conditions �18�, and eliminating the coeffi-
cients cmj from the resulting system of equations, one obtains
the following relation between the bmj and dmj coefficients:

bmj

dmj
=

� jJm� ��bRj�Jm�� jRj� − Jm��bRj�Jm� �� jRj�
Hm

�2���bRj�Jm� �� jRj� − � jHm
�2����bRj�Jm�� jRj�

.

�20�

Here, the prime symbol denotes the derivative with respect
to the argument and � j =� j /�b. These calculations can be
repeated for the case of the TM polarization, the result being
that Eq. �20� remains valid, but in this case � j
= ��b� j� / �� j�b�. Now, the definition �14� shows that Sj,mn
= �bmj /dmj�	mn, which means that for cylinders, in the case of
a TE or TM polarized incident wave, the scattering matrix is
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diagonal. Importantly, by using the same procedure one can
obtain a relation between bmj and cmj, which is similar to the
Eq. �20�. With the Fourier coefficients now known, the field
inside the cylinders can be determined by using Eq. �19�.
Note that this formalism can be easily extended to the case of
scatterers of arbitrary shape, the main difference being that in
this case the scattering matrices S j are no longer diagonal.46

C. Calculation of the fields at the second harmonic

The second step of our numerical method consists in the
calculation of the electromagnetic field at the SH. To this
end, we first determine the source of the field at the SH,
namely, the nonlinear polarization induced by the field at the
FF. According to a model that is widely used in the study of
the SHG in centrosymmetric media,47 this nonlinear polar-
ization can be separated in two distinct components. First, a
�local� dipole-allowed surface nonlinear polarization,
Ps�r ;2��, whose support is a surface layer several Ång-
ströms thin, and the second, a �nonlocal� bulk nonlinear po-
larization, Pb�r ;2��, which is generated inside the nonlinear
medium by electric quadrupoles and magnetic dipoles.

The surface polarization vector is defined as

Ps�r;2�� = �0�̂s
�2�:E�r;��E�r;��	�r − rs� , �21�

where rs defines the surface, �̂s
�2� is the surface second-order

susceptibility tensor, and the Dirac function shows the sur-
face characteristic of this source nonlinear polarization. Un-
less the surface contains structural features with intrinsic
chirality, the metal/background interfaces possess an isotro-
pic mirror-symmetry plane perpendicular to the interface.
Under these circumstances, the surface nonlinear susceptibil-
ity �̂s

�2� has only three independent components, namely,
�̂s,���

�2� , �̂s,�� �
�2� , and �̂s,� ��

�2� = �̂s,���
�2� , where the symbols � and �

refer to the directions normal and tangent to the surface,
respectively. In our calculations, we assume that the
cylinders are made of Ag, and thus we use �̂s,���

�2�

=2.7910−18 m2 /V, �̂s,� ��
�2� = �̂s,���

�2� =3.9810−20 m2 /V,
and �̂s,�� �

�2� =0.48

From the symmetry properties of the surface susceptibil-
ity tensor �̂s

�2� one can derive the polarization characteristics
of the field at the SH, which is generated by the surface
nonlinear polarization. Thus, in the case of the TM polariza-
tion the normal component of the electric field is zero and
consequently no field is generated at the SH. On the other
hand, when the incident wave is TE polarized, the electric
field lies in the transverse plane, and thus the field at the
surface of the cylinders contains both normal and tangent
components. Specifically, the nonlinear surface polarization
has the following components:

Ps,r = �0�̂s,���
�2� Er

2, �22a�

Ps,� = 2�0�̂s,���
�2� ErE�. �22b�

The nonlinear bulk polarization in an isotropic centrosym-
metric medium has the following general expression:49

Pb�2�� = ��E��� · �E��� + �E����� · E���

+ � � �E��� · E��� , �23�

where �, �, and � are the bulk nonlinear coefficients of the
material. If we assume that the electrons in the metal are
described by the free-electron model, these parameters are

� = 0, �24a�

� = �0
e

2m0�2 , �24b�

� =
�

4
�1 − �r��� , �24c�

with e and m0 being the electron charge and mass, respec-
tively, and �r���=���� /�0 the relative permittivity of the
metal. As we will show in what follows, the SHG is domi-
nated by the surface component, which in turn is generated
only in the case of the TE polarization. As a result, we will
consider only this case. Furthermore, it should be noted that
the free electrons in the metal also contribute to the nonlinear
surface susceptibility �primarily to the component �̂s,���

�2� �,
but this contribution is already accounted for by the experi-
mentally determined values of the components of the nonlin-
ear surface susceptibility.48

The nonlinear boundary conditions obeyed by the electro-
magnetic fields at the SH, in the case of the TE polarization,
are given by47

Hz
int��� − Hz

ext��� = i�Ps,�, �25a�

1

� j
D�

int��� −
1

�b
D�

ext��� = −
1

� jRj

�Ps,r

��
+

Pb,�

� j
, �25b�

where the permittivities are evaluated at the SH frequency
�=2�. Note that due to the presence of the nonlinear polar-
ization sheet at the surface of the metal the nonlinear bound-
ary conditions are different from the linear ones, which are
given by the Eqs. �18�.

Similar to the linear scattering problem, the total SH field
at a point P can be viewed as consisting of two distinct
components: a source field, Hz

src�P ,��, which reaches the
point P without being scattered by any of the cylinders, and
the scattered field, Hz

sc�P ,��, which arrives at P after it was
scattered by at least one of the cylinders,

Hz
tot�P,�� = Hz

src�P,�� + Hz
sc�P,�� . �26�

The source field satisfies the Helmholtz equation

�2Hz
src�r;�� + �b

2���Hz
src�r,�� = − i���  Pnl� · ez,

�27�

where ez is the unit vector along the z axis and Pnl=Ps+Pb is
the total nonlinear polarization. Since the source polarization
Pnl is known once the electric field at the FF is determined,
this source field can easily be calculated by using the
Green function of the Helmholtz equation in 2D, G2D�r�
=−�i /4�H0

�2��r�,
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Hz
src�P,�� = −

�

4
H0

�2���brP� � ���  Pnl� · ez . �28�

In this equation the symbol � represents the convolution
operator. Because of the particular characteristics of the sur-
face and bulk polarizations, the Eq. �28� represents the sum
between a line integral over the boundaries of all cylinders
and a surface integral over their transverse cross sections.
Moreover, the field Hz

src�P ,�� consists of a linear superposi-
tion of fields Hz,j

src�P ,��, each such field being generated by
the corresponding cylinder Cj. Inserting in the Eq. �28� the
Graf formula45 for the Bessel function H0

�2��r�,

H0
�2���b�rP − rM�� = 	

m=−�

�

e−im�M
j

Jm��brM
j �  Hm

�2���brP
j �eim�P

j
,

�29�

one can easily show that the Fourier-Bessel expansion of the
field Hz,j

src�P ,��, around the cylinder Cj, can be written as

Hz,j
src�P� = 	

m=−�

�

a�,mjHm
�2���brP

j �eim�P
j
, �30�

where,

a�,mj = −
�

4
�

�j

e−im�M
j

Jm��brM
j ����rM

j  Pnl� · ezdrM
j .

�31�

In this relation, the domain of integration � j is either the
boundary of the cylinder Cj, in the case of the surface polar-
ization, or its transverse cross section, when the bulk polar-
ization is integrated. Similar to our analysis of the scattering
process at the FF, the scattered field at the SH can be written
as �see also the Eq. �8�

Hz
sc�P,�� = 	

j=1

N

	
m=−�

�

b�,mjHm
�2���brP

j �eim�P
j
, �32�

where b�,mj are the scattering coefficients at the SH. Com-
bining Eqs. �30� and �32� leads to the formula for the total
field Hz

tot�P ,��,

Hz
tot�P,�� = 	

j=1

N

	
m=−�

�

�a�,mj + b�,mj�Hm
�2���brP

j �eim�P
j
,

�33�

where the two series containing the a�,mj and b�,mj coeffi-
cients correspond to the source and scattered fields, respec-
tively. By inserting in this equation the Graf formula �11�,
the total field outside the cylinder Cj, at a point P, can be
written in the following form:

Hz,j
tot�P,�� = 	

m=−�

�

�a�,mj + b�,mj�Hm
�2���brP

j �eim�P
j

+ 	
k=1

k�j

N

	
m,q=−�

�

Tjk,mq�a�,qk + b�,qk�Jm��brP
j �eim�P

j
,

�34�

where the index j signifies that Hz
tot�P ,�� is calculated in the

coordinate system with the origin in Oj. This equation shows
that the total field consists of the sum between the field gen-
erated and scattered by the cylinder Cj �the first term in the
Eq. �34� and the total field incident onto this cylinder �the
second term in the Eq. �34�. This latter field, in turn, is given
by the sum between the fields generated by all the other
cylinders and the fields scattered by these cylinders.

The total field can also be decomposed in an alternative
way, namely, it can be written as the sum of a source field
generated by the cylinder Cj, Hz,j

self�P ,��, a local field,
Hz,j

loc�P ,��, which is the field incident onto Cj, and the cor-
responding scattered field, Hz,j

sc �P ,��. Furthermore, we re-
quire that the source field satisfies the nonlinear boundary
conditions �25�, whereas the field involved in the scattering
process,

Hz,j
lin�P,�� = Hz,j

loc�P,�� + Hz,j
sc �P,�� , �35�

satisfies the linear boundary conditions corresponding to the
TE polarization, i.e., Eqs. �18�. It should be noted that if the
nonlinear bulk polarization is given by the Eq. �23� then the
source term in the Helmholtz Eq. �27� cancels everywhere
except on the boundaries of the cylinders and therefore the
fields Hz,j

self�P ,�� and Hz,j
lin�P ,�� satisfy the homogeneous

part of this equation.
Now, the source field can be expanded in Fourier-Bessel

series as

Hz,j
self�P,�� = 	

m=−�

�

c�,mj
self Jm�� jrP

j �eim�P
j
, �36�

for rP
j �Rj, and

Hz,j
self�P,�� = 	

m=−�

�

g�,mj
self Hm

�2���brP
j �eim�P

j
, �37�

for rP
j �Rj. By imposing the nonlinear boundary conditions

�24d� at rP
j =Rj, we obtain the following system of linear

equations for the coefficients c�,mj
self and g�,mj

self :

c�,mj
self Jm�� jRj� − g�,mj

self Hm
�2���bRj� = i�P̄�,m, �38a�

i� j

� j�
c�,mj

self Jm� �� jRj� −
i�b

�b�
g�,mj

self Hm
�2����bRj� = P̄r,m.

�38b�

In these relations,

P̄�,m = Ps�,m, �39a�
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P̄r,m = −
1

� jRj
� �Psr,m

��
�

rP
j =Rj

+
Pb�,m

� j
. �39b�

are the m-th order coefficients of the expansion in Fourier-
Bessel series of the nonlinear polarization. The solution of
the linear system �38�, which completely determine the
source field Hz,j

self�P ,��, is found as

c�,mj
self = i

�c,m

�m
, �40a�

g�,mj
self = i

�g,m

�m
, �40b�

where �c,m=Hm
�2��kbRj�P̄r,m+ZbHm

�2���kbRj��P̄�,m, �g,m

=Jm�� jRj�P̄r,m+ZjJm� �� jRj��P̄�,m, �m=ZbJm�� jRj�
Hm

�2����bRj�−ZjHm
�2���bRj�Jm� �� jRj�, and Zj = �� j /� j�1/2. Note

that these coefficients can be easily calculated once the FF
field is determined. Based on the Eq. �35�, the field
Hz,j

lin�P ,�� can be written as

Hz,j
lin�P,�� = 	

m=−�

�

c�,mj
lin Jm�� jrP

j �eim�P
j
, �41�

for rP
j �Rj and

Hz,j
lin�P,�� = 	

m=−�

�

f�,mj
loc Jm��brP

j �eim�P
j

+ 	
m=−�

�

g�,mj
sc Hm

�2�

��brP
j �eim�P

j
, �42�

for rP
j �Rj. Now, by combining Eqs. �37� and �42� one can

cast the total field Hz,j
tot�P ,�� outside the cylinder Cj in the

following form:

Hz,j
tot�P,�� = 	

m=−�

�

f�,mj
loc Jm��brP

j �eim�P
j

+ 	
m=−�

�

�g�,mj
self

+ g�,mj
sc �Hm

�2���brP
j �eim�P

j
, �43�

We now introduce the vectors a�,j = �a�,mj�, b�,j = �b�,mj�,
g�,j

self= �g�,mj
self �, g�,j

sc = �g�,mj
sc �, and f�,j = �f�,mj

loc �. Then, by com-
paring Eqs. �34� and �43�, one can see that these vectors
satisfy the following relations:

a�,j + b�,j = g�,j
self + g�,j

sc , �44a�

	
k=1

k�j

N

T jk�a�,k + b�,k� = f�,j . �44b�

Furthermore, the scattered and the incident �local� fields are
related via the scattering matrix S�,j,

g�,j
sc = S�,jf�,j , �45�

where the index � means that the scattering matrix is evalu-
ated at the frequency of the SH. From this equation and Eqs.
�44� we can derive the relation

	
k=1

k�j

N

S�,jT jk�a�,k + b�,k� = �a�,j + b�,j� − g�,j
self, �46�

which holds for j=1, . . . ,N. This linear system of matrix
equations can be written in a more compact form if we in-
troduce the vectors A�= �a�,j�, B�= �b�,j�, and G�

self= �g�,j
self�.

With these notations, the Eq. �46� becomes

S�B� = G�, �47�

where S� is given by the Eq. �16�, with all matrix compo-
nents evaluated at the frequency �, and

G� = − S�A� + G�
self. �48�

The vector coefficients A� and G�
self are completely deter-

mined once the field at the FF is calculated. As a result, the
scattering vector coefficients B� can be found by solving the
system �47�, and subsequently the field at a point P outside
the cylinders is determined from the Eq. �33�.

Finally, it can be seen from Eqs. �36� and �41� that the
total field inside the cylinder Cj is given by the following
equation:

Hz,j
tot�P,�� = 	

m=−�

�

�c�,mj
self + c�,mj

lin �Jm�� jrP
j �eim�P

j
. �49�

As in the case of the linear scattering problem, the coeffi-
cients c�,mj

lin are calculated by imposing on the field
Hz,j

lin�P ,�� the linear boundary conditions �18�.

D. Technical Implementation of the numerical method

Because of the nature of the MSM method, the numerical
algorithm lends itself to a very efficient, parallel implemen-
tation, as many of the major computational steps are inde-
pendent of each other. The main steps in the simulation are
as follows. First, the scattering matrices, S j, of single cylin-
ders are calculated and subsequently the scattering matrix at
the FF, S�, is determined using the Eq. �16�. The scattering
coefficients at the FF are then found by solving the linear
system given by the Eq. �17�. These coefficients are used to
determine the fields at the FF, via the Eq. �8�, which are then
used to compute by means of the Eqs. �21� and �23� the total
nonlinear polarization at the SH. Note that in the calculations
presented here we used all components of the nonlinear sur-
face susceptibility tensor �not only the dominant one,
�̂s,���

�2� � whereas for the bulk nonlinear polarization we used
the Drude model �24�. Furthermore, once one knows the total
nonlinear polarization at the SH one can determine the
source coefficients, A�, and the vector G�

self, and, implicitly,
the vector G�. Then, the scattering coefficients and the fields
at the SH are determined from the Eq. �47� and �33�, respec-
tively. Finally, the fields inside the cylinders, at the FF and
SH, are calculated by using the Eqs. �19�, �36�, and �41�.

There is a series of numerical parameters that need to be
determined so that the numerical results converge. The most
important of these parameters is the number M of Bessel and
Hankel functions used in the Fourier-Bessel expansions. Due
to the technical limitations imposed by the 64 bit data stor-
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age, the order m is restricted to 120, leading to a maximum
of M =241 expansion terms. Nevertheless, our numerical
tests have shown that, for example, for a one cylinder �R
=500 nm� geometry case, convergence can be achieved by
employing M �41 expansion terms. On the other hand, for
the most complex of the scattering geometries studied here
convergence is reached at M �81. Other numerical param-
eters required for the implementation of the MSM method
are related to the numerical integrations needed to determine
the nonlinear source coefficients, A�, and the absorption
cross section. Thus, the numerical integration has been per-
formed by uniformly dividing the �0,2
 domain into 360
intervals and the �0,Rj domains into 20 intervals. Integra-
tion was performed using a fourth-order Simpson formula.

The code has been developed and run on a high-
performance computing system of Intel®Xeon processors
using the Message Passing Interface to assure parallelization.
In addition, in order to solve the system of linear equations
that gives the scattering coefficients at the FF and SH we
have employed linear algebra solvers in the
�Intel® Math Kernel Library. Typical runtimes using 32
cores are about 15 min for computing just the field profile at
a fixed wavelength and can run to about 1 h for scanning
over 800 distinct wavelengths while computing only the
cross sections of the scattering system.

III. CALCULATION OF THE TOTAL, ABSORPTION,
AND SCATTERING CROSS SECTION

The MSM formalism allows one to determine not only the
spatial distribution of the electromagnetic field but also a
series of important physical quantities, such as the total cross
section, the absorption cross section, and the scattering cross
section. Whereas the field distribution provides essential in-
formation regarding the properties of the optical near field,
the scattering cross sections characterize the process of en-
ergy transfer from the incident wave into the far-field.

A. Calculation of scattering cross sections

The total scattering cross section, Qs���, for the field at
the FF is defined as

Qs��� �
Psc���

Pinc = �
0

2


qs��;��d� , �50�

where Psc and Pinc are the total scattered power per unit
length and the power per unit length of the incident wave,
respectively, and qs�� ;�� is the differential cross section.

In order to calculate the total scattered power we consider
a cylinder of radius R, which contains all the scatterers, and
compute the total power of the scattered field that flows
through the boundary of this cylinder. Then, R is increased to
infinity and the corresponding asymptotic value of Psc is de-
termined. This procedure is expressed mathematically as fol-
lows:

Psc��� = lim
R→�

�R�
0

2
 1

2
Re�Esc  Hsc�

�rd�� . �51�

By using the asymptotic expressions at x→�, of the Hankel
functions Hm

�2��x� and their derivatives, we obtain

Psc��� =
�b�


�b
2�

0

2
 � 	
m=−�

�

b̃meim��2

d� , �52�

where b̃mj are the scattering coefficients in the coordinate
system with the origin in O. Using the Graf formula, these
coefficients can be written as

b̃m = 	
j=0

N

	
n=−�

�

bmje
i�n−m��jJm−n��brj� . �53�

Furthermore, the power per unit length of the incident plane
wave is given by

Pinc =
1

2
Rsv�b�E0�2, �54�

where Rs is the radius of the smallest cylinder that would
contain the entire set of scatterers and v is the phase velocity
of the incident plane wave. Note that since the amplitude of
the scattered field depends linearly on the amplitude E0 of
the incident plane wave, the total and the differential scatter-
ing cross sections do not depend on E0. In order to have this
condition satisfied at the SH, too, we define the scattering
cross sections at � as

Qs��� �
Psc���
�Pinc�2

= �
0

2


qs��;��d� . �55�

B. Calculation of the absorption cross section

The scattering cross section characterizes the strength of
the interaction between incoming plane waves and the ob-
jects that scatter these waves. Another physical quantity that
provides insightful information about the scattering process
is the absorption cross section. In particular, the absorption
cross section quantifies the rate at which the scattering sys-
tem absorbs energy from the incident wave, and as such it
can be instrumental in characterizing the strength of the cou-
pling between the near field and the system of scatterers. At
the FF, the absorption cross section can be determined by
separating the total power flow out of the scattering region,
Ptot, which sometimes is also referred to as the “extinction”
power, into the absorbed and scattered power,

Ptot = Pabs + Psc. �56�

In this equation, Ptot is defined as

Ptot��� = lim
R→�

�R�
0

2
 1

2
Re�Etot  Htot��rd�� . �57�

Taking into account that Etot=Einc+Esc and Htot=Hinc+Hsc,
the Eq. �57�, in conjunction with the Eq. �51�, leads to the
following expression for the total power:50

Ptot = − lim
R→�

�R�
0

2
 1

2
Re�E�

scHz
inc�

+ E�
incHz

sc�

�d�� . �58�

Using again the asymptotic forms for the Bessel and Hankel
functions, the total power can be expressed as
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Ptot = −
2�b�

�b
2Zb

	
m=−�

�

�b̃m�cos�arg b̃m +
m


2
+ m�0� . �59�

This total power is used to define the total �or extinction�
cross section,

Qt��� =
Ptot���

Pinc . �60�

Similarly, the absorption cross section is defined as,

Qa��� =
Pabs���

Pinc . �61�

Finally, by using the Eq. �56�, the absorption cross section is
simply given by

Qa��� = Qt��� − Qs��� . �62�

It should be noted that when the scatterers exhibit no absorp-
tion, i.e., when �=0, the absorption cross section vanishes, in
which case Eq. �62� represents the well known optical theo-
rem.

In the case of the SH, as there is no incoming field, the
approach just described cannot be used to calculate the total
cross section. The power loss per unit length, in this case, is
determined by integrating over the transverse cross section
of all cylinders the Joule thermal power loss, Pabs

= 1
2Re�J ·E��, with J=� jE being the conduction current den-

sity and � j the conductivity of the cylinder Cj �for the Drude
model, �= ��0�p

2� / ��− i���.

IV. LINEAR AND NONLINEAR SCATTERING
FROM METALLIC CYLINDERS

In this section we apply the numerical method just de-
scribed to investigate the linear and nonlinear scattering from
a set of homogeneous centrosymmetric �metallic� cylinders.
We consider several cases that are of particular practical in-
terest, namely, scattering by one cylinder, scattering by 1D
chains of cylinders, and the general case of wave scattering
by 2D ordered and random distributions of cylinders.

A. Second harmonic generation from a single metallic cylinder

To begin with, let us consider the linear and nonlinear
wave scattering by a single metallic cylinder. This is an im-
portant case because it has an analytical solution,40 which
allows us to validate our numerical method. We have there-
fore considered the wave scattering by a cylinder with radius
R=500 nm and calculated the scattering cross section, at
both the FF and at the SH. The results of these calculations,
which are presented in Fig. 2, show that the scattering cross
section at the FF has a global maximum at the wavelength
��300 nm, whereas the scattering cross section at the SH
decreases with the wavelength. In addition, it can be seen
that the scattering cross sections at the FF and SH present a
series of spectral peaks. Note that at the FF there is only one
set of such spectral resonances; however, at the SH there are
two spectral regions in which the scattering cross section
presents a series of spectral peaks. As we will explain in

more detail later, the physical origin of these two sets of
spectral peaks at the SH can be traced to different physical
effects.

The properties of the maxima in Fig. 2 are revealed, in
part, by the spatial distribution of the amplitude of the elec-
tric field, calculated at the wavelength of these spectral
peaks. Thus, Fig. 2 shows that at �=525 nm, which corre-
sponds to one of the maxima of Qs���, the amplitude of the
electric field around the cylinder, at the SH, presents a series
of local maxima �see panel B in Fig. 2�. This is a signature of
the excitation of localized surface plasmon modes.51 These
are TE modes of the metallic cylinder, at their cut-off wave-
length. To be more specific, since the wave vector of the
incident wave is perpendicular to the axis of the cylinder, the
propagation constant of the waveguide modes of the cylinder
must be zero, i.e., it satisfies the cut-off condition. Note that
for this wavelength no SPPs are excited at the FF.

There is also an obvious relation between the spatial dis-
tribution of the near field at the SH and the scattering pattern
showed by the differential scattering cross section, qs�� ;��.
Thus, the polar representation of qs�� ;��, shown in Fig. 2,
reveals that the SH is radiated primarily along a series of
specific directions, the number of these angular maxima be-
ing equal to the number of maxima of the spatial distribution
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FIG. 2. �Color online� The top two panels show the logarithmic
plot of the total scattering cross sections corresponding to a single
cylinder with radius R=500 nm. The panels in the middle show the
spatial distribution of the electric field amplitude calculated at �
=570 nm and correspond to the dashed vertical lines in the top two
panels. The bottom panels present the polar representation of the
differential scattering cross sections, calculated at the same wave-
length �=570 nm. Left and right panels correspond to the FF and
SH, respectively.
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of the near field. As a general characteristic of the scattering
pattern at the SH, most of the radiation is emitted in the
forward direction. At the FF most of the radiation is prima-
rily emitted in the forward direction, too, although there are
several other secondary directions in which a much smaller
amount of radiation is emitted. It should be noted that these
results obtained by numerical simulations fully agree with
the analytical solution of the linear and nonlinear scattering
problem, which is presented in Ref. 40.

We also consider this same scattering process, but for a
cylinder with R=200 nm. The main results obtained in this
case are summarized in Fig. 3. It can be seen in this figure
that by decreasing the radius of the cylinder the number of
SPP modes of the cylinder decreases and their resonance
wavelength is blue shifted. Figure 3 also provides additional
physical insight into the nature of the two different types of
SPP resonances excited at the SH. The origin of the first type
of such SPP resonances, which are excited al lower wave-
lengths �at �=257 nm in Fig. 3�, is the SPP-induced field
enhancement at the FF. Thus, as can be seen in Fig. 3, at the
wavelengths corresponding to these resonances the ampli-
tude of the field at the FF is enhanced near the surface of the
cylinder and, as a consequence, the induced nonlinear effects
are also stronger. On the other hand, the SPP resonances at
longer wavelengths �at �=480 nm in Fig. 3�, are due to the
excitation of SPPs at the SH, with no such localized modes
being excited at the FF. Inasmuch as, mathematically, the
SPP resonances are given by the poles of the scattering ma-
trix in the Eq. �20�, the latter type of resonances should occur
when the operating wavelength is about twice as large as the

wavelength at which the former type of resonances occur.
This conclusion fully agrees with the results presented in
Fig. 3. This distinction between the two types of SPP reso-
nances will appear in more complex scattering geometries as
well. Importantly, a further increase in the strength of the
nonlinear interaction can be achieved by tuning the param-
eters of the cylinder, so as the two types of resonances are
excited at the same wavelength. This effect has been recently
observed in the case of wave scattering by dielectric
cylinders.52

B. Linear and nonlinear wave scattering by a metallic dimer

The wave scattering by a metallic nanodimer, which we
analyze in this section, has a series of important technologi-
cal applications that rely on the enhancement of the electric
field at the surface of metals. Specifically, by using metallic
nanodimers one can generate large electric fields, especially
in the space between the metallic cylinders forming the
dimer. As a result, because nonlinear optical effects at metal/
dielectric interfaces, such as SHG and SERS, are strongly
dependent on the physical properties of the interface, metal-
lic nanodimers can be used efficiently in sensing applications
or surface optical microscopy. Importantly, in the linear case
there is an analytical solution to the problem of wave scat-
tering by two cylinders;53 however, in the nonlinear case no
analytic solution is known yet. Therefore, numerical simula-
tions play an important role in understanding the nonlinear
wave scattering by these and other more complex nanostruc-
tures.

In our analysis, we have considered a dimer consisting of
two cylinders with radius R=200 nm, separated by a dis-
tance d. The results of our numerical study are summarized
in Figs. 4 and 5, which correspond to the separation distance
d=20 nm and d=100 nm, respectively. The dispersion plots
presented in these figures show that, similar to the case of a
single cylinder, the scattering cross section of a metallic
dimer presents a series of spectral peaks �SPP bands�, at both
the FF and the SH. These bands are located in the same
spectral regions as in the case of a single cylinder, although
the wavelength of the peaks is slightly blue shifted. This shift
in the frequency of the SPP resonances is induced by the
interaction between the SPPs excited on each cylinder, a
physical effect that resembles the hybridization of atomic
orbitals. As expected, this blue shift in the wavelength of the
SPP resonances decreases as the separation distance d in-
creases. The strength of the coupling between the SPP modes
of single cylinders is also illustrated by the field profiles
presented in panels D in Figs. 4 and 5. Thus, these field
profiles are almost independent on the angle of incidence �0
�the angle made by the incident wave with the longitudinal
axis of the dimer�, which proves that this field is chiefly the
result of near field interactions. This same strong SPP cou-
pling explains the fact that the spectral location of the SPP
bands in Figs. 4 and 5 does not depend on the angle �0. On
the other hand, the scattering cross sections at both the FF
and SH increase with the angle �0, which is due to a more
efficient coupling between the incident wave and the dimer
at larger �0. Furthermore, similar to the case of a single
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FIG. 3. �Color online� The top panels show the spectra of the
scattering cross sections. The spatial profile of the amplitude of the
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C. G. BIRIS AND N. C. PANOIU PHYSICAL REVIEW B 81, 195102 �2010�

195102-10



cylinder, the SPP resonances at the SH can be divided into
two types, those induced by the resonant excitation of SPP
modes at the FF and those that are associated with the exci-
tation of SPP modes solely at the SH.

Additional physical insights into the properties of the
wave scattering by a metallic dimer are revealed by the dif-
ferential scattering cross sections presented in Figs. 6 and 7,
the plots in these figures corresponding to a separation dis-

tance of d=20 nm and d=100 nm, respectively. As ex-
pected, when the direction of the incoming wave vector co-
incides with one of the symmetry axes of the dimer, the
spatial pattern of the far-field response is also symmetric
with respect to this axis; however, at an oblique angle of
incidence the scattering pattern is no longer symmetric. In
addition, the angular dependence of the differential scattering
cross section shows that at the FF most of the scattered field
is emitted in the forward direction. On the other hand, be-
cause of the intricate distribution of the sources of the SH
�the surface and bulk nonlinear polarizations�, the scattering
pattern of qs�� ;�� presents a much more complex depen-
dence on the polar coordinate �. Moreover, since the distri-
bution of the sources of the SH depends strongly on the
separation distance between the cylinders, the scattering pat-
tern at the SH also changes significantly with this distance
�see Figs. 6 and 7�.

The spectral characteristics of the scattering cross sections
provide us with insightful information about the transfer of
energy from the incident wave to the far-field. In turn, the
spectra of the absorption cross sections reveal important
properties of the fundamental and harmonic near-fields. In
order to illustrate this idea, we present in Fig. 8 the scattering
and absorption cross sections for a metallic dimer, as well as
the field profiles corresponding to certain resonance wave-
lengths. This figure reveals several notable dependencies be-
tween the spatial profile of the fundamental and harmonic
near-fields and the spectra of the scattering and absorption
cross sections. First, at both the FF and the SH the spectral
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resonances of the absorption and scattering cross sections do
not always coincide, which proves that they have different
physical origins. Moreover, the spectral peaks in the absorp-
tion cross section at the FF correspond to a significant in-
crease in the near-field, at the wavelength of the largest peak
the field being enhanced by more than an order of magnitude
�compare panels A and C in Fig. 8�. Furthermore, the spectral
resonances seen in the SH spectrum have different origins,
too. Thus, the excitation within a small spatial domain in-
between the cylinders of a strong field, a so-called “hot
spot,” is directly related to the resonance at �=350 nm. On
the other hand, the resonance at �=236 nm is due to the
excitation of a localized mode than penetrates into the cylin-
ders up to a considerable depth. Interestingly enough, the
panels C and D in Fig. 8 show that at �=236 nm the field at
the FF penetrates into the cylinders only a very small dis-
tance while at the SH the penetration depth is considerably
larger. This effect is explained by the fact that at the SH the
wavelength is smaller than the plasma wavelength ��p

=139.6 nm�, and therefore at this wavelength the cylinders
have dielectric properties, namely, the real part of the permit-
tivity is positive. At the FF, however, ���p, which means
that the permittivity has the optical properties of a metal.
Finally, note that whereas at the FF the scattering cross sec-
tion is more than two orders of magnitude larger than the
absorption cross section, at the SH the absorption cross sec-
tion is larger than the scattering cross section in almost the
entire spectral domain considered in our calculations.

C. Wave scattering from 1D chains of metallic cylinders

We have applied our numerical method to study the SHG
in more complex scattering geometries, namely, chains of
coupled metallic cylinders. Such nanostructures can find im-
portant technological applications to subwavelength active
optical waveguides, optical nanoantennae, or light focusing
at subwavelength scale.

The geometry considered in our study consists of N=12
metallic cylinders arranged in a linear chain, the radius of the
cylinders and the separation distance being R=200 nm and
d=20 nm, respectively. The main results pertaining to this
scattering geometry are summarized in Figs. 9 and 10, the
angle of incidence corresponding to these figures being �0
=0° and �0=90°, respectively ��0 is the angle between the
direction of the incident wave and the axis of the chain of
cylinders�. One of the main conclusions illustrated by these
figures is that, for both angles of incidence, the complexity
of the scattering spectra increases with the number of scat-
ters. This fact suggests that as the number of scatterers in-
creases, the long-range interactions among the scatterers be-
comes stronger and therefore they play an increasingly
important role in determining the global optical response of
the structure. This coherent response of the scatterers is il-
lustrated by the top two panels in Fig. 9, which show that
although the spectrum of the scattering cross section at the
FF has a large peak at �=313 nm, no spectral resonance
exists at the SH. To be more specific, it can be seen that at
this wavelength most of the SH field �and consequently the
nonlinear polarization� is localized in the region in-between

25
50

30

210

60

240

90

270

120

300

150

330

180 0

5x10
1x10

30

60

240

90

270

120

300

330

0

5

10

30

210

60

240

90

270

120

300

150

330

180 0

1x10

2x10 30

60

240

90

270

120

300

330

0

20

40

30

210

60

240

90

270

120

300

150

330

180 0

5x10

1x10 30

60

240

90

270

120

300

330

0

-10

-11

-11

-11

-12

-13

FIG. 7. The same as in Fig. 6, but for d=100 nm. The plots
correspond to �=243 nm and �0=90° �upper panels�; �=232 nm
and �0=0° �middle panels�; and �=328 nm and �0=62° �bottom
panels�. Left and right panels correspond to the FF and SH,
respectively.

−0.8 0 0.8
−0.6

0

0.6

1

2

3

−0.8 0 0.8

1

2

3

x 10
−6

Y
[µ
m
]

X [µm] X [µm]

2 2.5 3 3.5 4 4.5 5 5.5 6

0.1
1

10

4 5 6 7 8 9 10 11 1210
−16

10
−12
10
−8

Q
s,
a(
ω
)

Q
s,
a(
2
ω
)[
m
/W

]

−0.8 0 0.8
−0.6

0

0.6

2
4
6
8
10

−0.8 0

1

2

3

x 10
−6

0.8

Y
[µ
m
]

X [µm] X [µm]

2πR/λ

4πR/λ

A

B

C

D

FIG. 8. �Color online� The top panels show the absorption �solid
line� and scattering �dashed line� cross sections. The radius is R
=200 nm and the separation distance d=20 nm. The spatial profile
of the amplitude of the electric field for �=350 nm and �0=20° �A
and B� and �=236 nm and �0=20° �C and D� is presented in the
bottom panels. Left and right panels correspond to the FF and SH,
respectively.

C. G. BIRIS AND N. C. PANOIU PHYSICAL REVIEW B 81, 195102 �2010�

195102-12



adjacent cylinders �see panels A and B in Fig. 9�, leading to
a destructive interference in the far-field of the radiated light.
As we will see in the next section, this coherent optical re-
sponse of the scatterers is even more evident in the case of
2D ordered distributions of cylinders.

Figures 9 and 10 demonstrate that the wave scattering by
the chain of cylinders is strongly dependent both on the
wavelength as well as the angle of incidence. In particular,
Fig. 9 shows that, depending on the excitation frequency, the
chain of metallic cylinders supports either modes that propa-

gate only at the FF �panels A and B� or propagating modes at
both the FF and SH �panels C and D�. Importantly, the latter
ones can find important applications to subwavelength active
nanodevices,30 which can be used to generate and transport
optical power at subwavelength scale. Another notable effect
illustrated in the panel A in Fig. 9 is the formation at the end
of the chain of cylinders of an optical beam with width of
about � /3, a so-called optical nanojet, an effect that can be
employed to achieve subwavelength light focusing. On the
other hand, one can see in Fig. 10 that, as expected, an in-
coming wave that is normally incident onto the axis of the
chain ��0=90°� leads to the excitation of standing waves in
the chain of cylinders. Indeed, since in this case the projec-
tion of the wave vector of the incoming wave onto the lon-
gitudinal axis of the chain of cylinders cancels, no propagat-
ing modes can be excited.

D. Wave scattering by ordered 2D distributions
of metallic cylinders

As stated before, the versatility of the MSM algorithm
allows one to study the linear and nonlinear wave scattering
in cases in which the scatterers are characterized by a com-
plex spatial distribution. As examples of such complex ge-
ometries, we consider in this Sec. II D hexagonal and square
distributions of metallic cylinders. The main results regard-
ing these scattering structures are summarized in Figs. 11
and 12 and correspond to hexagonal and square distributions,
respectively. Similar to the case of 1D chains of metallic
cylinders, both these geometries show a significant increase
in the number of resonances in the spectrum of the scattering
cross section, at both the FF and the SH. As discussed in the
previous section, this effect is the result of the coherent re-
sponse of the ensemble of cylinders. In addition, in the case
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of 2D distributions SPPs excited on more than two cylinders
can couple, leading to a more intricate interaction among
these SPP modes. Moreover, note that as the wavelength de-
creases the scattering cross section at the SH increases. This
dependence is a direct consequence of the fact that at shorter
wavelengths the incident field penetrates deeper into the dis-
tribution of scatterers and therefore it induces a larger non-
linear polarization.

As can be seen in Figs. 11 and 12, the spatial field distri-
bution inside the ensemble of cylinders changes significantly
with the layout of the scatterers, a property that can be used
to tune the linear and nonlinear optical response of metama-
terials based on such primary building blocks. Alternative
potential technological applications are suggested by the
field profiles in Fig. 11. Thus, as can be seen in this figure,
the hexagonal distribution of cylinders concentrates the inci-
dent field toward the tip of the set of scatterers, especially at
the SH. Therefore, such a scattering geometry can be used to
efficiently focus and couple the optical near-field in guiding
nanostructures, such as the chain of nanowires studied in the
preceding section. Interestingly enough, Fig. 12 shows that
in the case of the square distribution of cylinders the field
generated at the SH is stronger at the back side of the en-
semble of scatterers. This surprising result can be explained
by the fact that at the front side of the ensemble of cylinders
the phase of the electric field is rather uniform along a plane
that is parallel to the first row of cylinders, whereas deeper
into the distribution of cylinders the spatial profile of the
phase of the electric field becomes strongly inhomogeneous.
As a result, the nonlinear polarization induced on the surface
of adjacent cylinders at the front side of the ensemble of
cylinders would cancel and therefore the amplitude of the
generated field at the SH is small. As the field at the FF
penetrates further into the distribution of cylinders it be-
comes strongly inhomogeneous and therefore a considerably
larger amount of surface nonlinear polarization is generated.

E. Second harmonic generation in 2D random distributions
of metallic cylinders

The last geometry we investigate is that of a 2D random
distribution of metallic cylinders. In this case, both the loca-
tion of the cylinders as well as their radius are random vari-
ables, the only imposed constraint being that the cylinders do
not overlap. The results corresponding to one such random
ensemble of cylinders are presented in Fig. 13. It can be seen
in this figure that, as in the case of ordered distributions of
cylinders, the scattering cross section at the SH increases as
the wavelength decreases. Again, this effect is explained by a
stronger nonlinear interaction at shorter wavelengths. In ad-
dition, the scattering spectra show fewer spectral features as
compared to those corresponding to ordered distributions of
cylinders, which is a direct consequence of the inhomog-
enous spectral broadening of the scattering resonances corre-
sponding to single cylinders. It can, in fact, be argued that
most of the spectral peaks seen in Fig. 13 are due to reso-
nances associated to individual cylinders �or cylinders of
similar size�, the coherent contribution to the scattering spec-
tra being smaller in this case as compared to the case of
ordered distributions. Nonetheless, the interaction among the
cylinders is evident in this case, too, leading to a field en-
hancement in the spaces between the cylinders �cavity effect�
at both the FF and SH. Even if such structures do not show
the intricate scattering patterns seen in our previous ex-
amples, they can nonetheless prove important for applica-
tions such as light localization. However, further studies of
these effects would require a much larger number of scatter-
ers.

V. CONCLUSION

To conclude, we have introduced in this paper a formal-
ism, based on the MSM method, for studying the linear and
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nonlinear scattering effects in a metamaterial made of cen-
trosymmetric nanowires. In our approach we have consid-
ered both the surface and bulk contributions to the nonlinear
polarization. We have also shown how a series of physical
quantities, such as the total cross section, the scattering cross
section, the absorption cross section, and the differential
scattering cross section, can be calculated and used to char-
acterize the wave scattering process. The MSM formalism
we have introduced proves to be a robust and powerful
method for analyzing the linear and nonlinear wave scatter-
ing, while at the same time providing a high degree of ver-
satility in choosing the scattering geometries that can be in-
vestigated. The numerical method has been used to study the
properties of the electromagnetic field generated by the wave
scattering by distributions of metallic cylinders, at both the
FF and SH. One of the main conclusions of our study is that
the linear and nonlinear optical response of all ensembles of
metallic cylinders considered in our work is strongly influ-
enced by the excitation of SPP resonances. The physical ori-
gin of these SPP resonances has also been elucidated and
discussed.

The relation between the geometry and spatial distribution
of the scatterers, on one hand, and, on the other hand, the
overall response of the ensemble of metallic cylinders has
also been analyzed. We have demonstrated that small varia-
tions in either the shape of the primary scatterers or the in-

trinsic structure �spatial distribution� of the ensemble of scat-
terers can lead to significant changes in both the far-field
optical response as well as in the spatial profile of the near-
field, at both the FF and SH. It has been revealed that this
dependency of the optical response of the ensemble of scat-
terers on its material and geometrical parameters is espe-
cially enhanced when SPPs are excited. A complete charac-
terization of this relationship would represent an important
step forward toward developing a comprehensive theoretical
description of the effective nonlinear optical properties of
metamaterials. Several potential technological applications
of the scattering geometries considered in this work have
also been discussed. Finally, it should be noted that the re-
sults reported in this work apply not only to metallic cylin-
ders but also to other deeply scaled down nanostructures
whose optical properties are similar to those of metals, such
as metallic carbon nanotubes.54,55
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